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nitudes in the matrix. This extra information can only 
be used if a function based on a Fourier summation is 
employed instead of a determinant to derive positions in 
(x,y) space. Tests are now being made using a 2D F F T  
summation that includes contributions from these 
omitted triple-phase invariants. 

In conclusion, although the value of a Kar le -  
Hauptman determinant is a discriminating figure of 
merit for selecting good phase sets, when used in 
conjunction with magic integers in a phase-deter- 
mining role, it is not of sufficient power to justify the 
amount of computer time required to evaluate the very 
large number of determinants involved. 

Two of us (MMW and DJT) gratefully acknowledge 
the assistance of the Science Research Council for 
sponsorship of a project to develop the use of the 
magic-integer concept. 
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With triple-phase relationships treated as linear equations it is possible to refine a set of phases from given 
initial values. Phases so obtained are better than those found by refining to self-consistency with the tangent 
formula. An investigation of the radius of convergence of the least-squares refinement process showed that a 
substantially correct solution may often be found even starting with random phases. Systems containing up to 
300 phases have been investigated and the results and their implications are discussed. It is concluded that the 
random approach can, at the very least, be used to obtain 70--100 phases as a good starting point for phase 
development. There is also the possibility of obtaining a sufficient number of phases directly to define a 
reasonably complex structure, especially with a computer augmented by an array processor. A problem 
which can arise with linear equations, as with the tangent formula, is that the phases obtained do not 
adequately define the enantiomorph and give an E map with a pseudo centre of symmetry. Two methods of 
overcoming this problem are described. 
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Introduction 

In describing MAGLIN, a new approach to structure 
determination, Woolfson (1977) proposed an alter- 
native to the tangent formula as a means of refining 
phases. The basic idea is quite simple. A triple-phase 
relationship, as given by the MULTAN Y2 routine, is 
represented by 

(fie + % + (fi~ + b ~_ 0 mod(27r). (1) 

Expressing phases in cycles and using the appropriate 
value of x as a weight this may be transformed to 

/ ( ( t ip  -~- /£7(fiq "1- /((f ir  "~  / ( ( n  - -  b), (2) 

where n is some, generally unknown, integer. If the 
integers are known then the whole system of such 
equations, normally far more numerous than the 
constitutent phases, may be written in matrix-algebra 
notation as 

A(fi = e (3) 

to give a least-squares solution 

(fi : (ArA)- 'Arc .  (4) 

If an approximate set of phases is available then 
nearest integers may be found for the right-hand sides 
of the equations and a process of cyclic refinement of 
phases may be carried out. 

The effectiveness of this technique of phase refine- 
ment has been tested for several structures by refining 
from an initially correct set of phases. The results of so 
doing are shown in Table 1 compared with tangent- 
formula refinement starting from the same point with 
the same data set. These results, and others, show that 
the linear-equations refinement is always at least as 
good as that by the tangent formula and often is far 
better. The ergocalciferol results are of some interest 
here. As the system being treated becomes larger so the 
least-squares solution steadily improves while the 
tangent-formula solution just as steadily deteriorates. 
The rather perverse behaviour of the tangent formula 
for this structure is the probable reason for the diffi- 
culty experienced in solving it with MULTAN (Hull, 
Leban, Main, White & Woolfson, 1976). 

It is the combination of a magic-integer technique for 
determining trial phases (White & Woolfson, 1975; 

Declercq, Germain & Woolfson, 1975) and of the 
linear equations for refining phases that constitutes the 
proposed MA GLIN system. 

Weighting the equations 

The equations were found to work well in the 
'refinement' of correct phases. When refinement was 
started from phases of rather mediocre quality then the 
need for extra weighting of the equations, other than x 
weighting, became evident. For example, supposing 
that when the current phase estimates (in cycles) were 
inserted into a relationship its value was exactly 1.5. 
What nearest integer should be used? Clearly in this 
case the relationship is of no value in the refinement 
process and should be eliminated from the system. It 
could be brought back later when the new phase 
estimates gave a value for the relationship which was 
not half-integral. But then let us suppose that the 
current phases gave the relationship the value 1.48 - 
should we wish to trust completely the indicated value 
of the nearest integral? The sensible thing here would 
be to retain the equation with a nearest integer of unity 
but to give it rather low weight. Thus we could end up 
with a weighting scheme where the complete weight 
given to an equation was xw(s~), where st is the 
departure from nearest integer and satisfies 

- 0 . 5  < - < 0.5 (5) 

and w(s 0 is close to unity for small values of st but 
approaches zero as I t~l approaches 0.5. There is no 
doubt that a sensible function w(st) could easily be 
found and that it would work splendidly but such a 
weighting scheme would be entirely impracticable. In 
every cycle of refinement the weights would change and 
so would the elements of the matrix A in equations (3) 
and (4). The most expensive part of the phase- 
refinement process is the matrix inversion of equation 
(4) and to do this once every cycle is unthinkable - at 
least in the present state of computer technology. 

A device for achieving what we want, but at little 
expense, is implicit in an idea explained in the 
MAGLIN paper (Woolfson, 1977). Originally it was 
used to refine for some pt,ases with a system which 
included a number of other phases for which phase 

Table 1. A comparison of the linear-equations and tangent-formula techniques of phase refinement 

Structure 

Lithocholic acid (C24H4003, P212t21, Z ---- 4) 
Cortisone (C22H2805, P212~2 ~, Z = 4) 

Ergocalciferol (C28H440, P2~2~2, Z = 8) 

Mean phase error 
Number of Number of L i n e a r  Tangent 

phases relationships equations formula 

35 65 20 ° 27 ° 
50 209 21.8 22.4 
50 230 33.6 35.0 
70 435 32.0 37.2 

146 1267 27.8 43.5 
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estimates were not available. The idea will be re- 
explained in terms of the present context. 

In what follows, to keep the discussion simple, we 
shall disregard the x weighting. Let us consider a 
typical relationship of the form 

~03 - (05 + ~09 --- n (6) 

with current phase estimates ~03 = 0.6, ~05 = 0-1, q~9 = 
0.7. Substituting these values into the left-hand side 
gives 1.2 and in the total set of equations this appears 
a s  

~03 -- (05 + ~09 = 1. (7) 

This equation alone, with 1 on the right-hand side, 
will introduce a tendency in the least-squares solution 
to reduce the value of ~03 and ~09 and increase the value 
of ~05. What  actually happens to these phases will 
depend on the aggregate effect of  all the equations. 
However, let us now suppose that the equation is used 
in the form 

~03 - ~05 + ¢P9 -- 1.2, (8) 

that is we use the calculated value of the left-hand side 
on the right-hand side. A moment 's  thought will show 
that, to a first approximation, the equation has been 
effectively eliminated for it will introduce no tendency 
to change any of the constituent phases. Of course the 
equation is still there and it will have some effect but 
this will be mainly as a damping effect on changes of 
the involved phases. 

Equations (7) and (8) may both be written in the 
form 

( P 3 -  (/95 + (~9 = 1 + f ,  (9) 

where f = 0 gives equation (7) and corresponds to 
giving the equation full weight while f = 0.2 gives 
equation (8) and the virtual elimination of the equation. 

The weight we actually wish to use depends on the 
value of st. If I~ll = 0.5 then we require f ( t 0  = 0.5 
while if st is small t h e n f ( t 0  can be close to zero. In fact 
we have found a convenient form of weight 

f(<,) = 2 I ' r l -  1( ira (10) 

with m > 1. The form of this function with various 
values of m is shown in Fig. 1. For m = l, f 0 0  = "  
which is equivalent to neutralizing all the equations so 
that no refinement takes place at all and m = 
corresponds to always accepting the nearest integer 
except when (~ --- ½. 

The advantage of this type of weighting procedure is 
that, with x reintroduced, a typical linear equation is of 
the form 

x.~oj, + x~oq + xq),. = x I n  - -  b +f(<0]  (1 1) 

and hence, in terms of equation (3), only the vector e is 
modified at each cycle of refinement. 

As a result of many experiments it seems that a good 
weighting function to use is 4tl 3. Some results of using 
this and other weighting functions will be given later. 

T h e  t e r m i n a t i o n  o f  r e f i n e m e n t  

When integers are used on the right-hand sides of the 
equations the refinement process reaches a natural 
termination - when the integers do not change. This is 
rather like the refinement of a centrosymmetric 
structure by a Fourier method which is stopped when 
the structure factors no longer change in sign. When 
the weighting funct ionf(¢0 is used the completion stage 
is not so clear. As one cycle succeeds another so do the 
phases gradually drift and the analogy of Fourier 
refinement of  a noncentrosymmetric structure suggests 
itself, where the calculated phases and the atomic 
coordinates constantly change. 

On the basis of experience a number of criteria have 
been used to terminate the refinement: (i)JA~9[max. < 

0.003 (~_1°); (ii) Id<~lmax. < 0.005;  (iii)[A f ( < 0 2 ]  I'2 < 
0.01; (iv) fixed number of refinement cycles; (v) (~12)~/2 
< 0.01. These all work reasonably well and one finishes 
the refinement process with substantially better phases 
than one started with. However, an examination of 
intermediate stages shows that very frequently the 
phases do not steadily improve as the refinement 
progresses but that the system goes through a set of 
phases much closer to the correct ones than those 
finally obtained. Obviously there is a great incentive to 
try to detect this situation; not only could one get a 
better answer but also one would do less work! What is 
needed is an effective figure of merit which would 
recognize a good set of phases even when there were 
not too many of them, say 100 or less. Testing for the 
relationships to be as close to zero as possible is not 
satisfactory; the refinement is one that drives the tt's 
towards zero and, statistically, the t~'s end up much 
closer to zero than they would with correct phases. 

Consequently it was decided to test the distribution 
of the values of¢~, and quantities related to st, obtained 
after each refinement cycle in terms of the theoretical 
distributions available from the work of Cochran 

/ 0-4 

03~  / S  

0,b S: ' "  o~ 0.4 0.3 (>.2 0.I l -_.--~.~.:"~ , , 
. . .~. .~--- 0-1 0.2 0.3 0.4 0.5 

• "/ 1]. 2 i- 

iU :: 
Fig .  1. T h e  w e i g h t i n g  f u n c t i o n  2 " - t l  " fo r  m = 2 (full  l ine) ,  rn = 3 

( d a s h e d  l ine)  a n d  m = 4 ( d o t t e d  l ine).  



886 THE A P P L I C A T I O N  OF PHASE R E L A T I O N S H I P S  TO C O M P L E X  STRUCTURES.  XVI 

(1955) and Karle & Karle (1966). Five figures of merit 
were explored: 

r/~= ~. I l a ~ l -  ( l a ~ l ) l , s =  1 , 2 , 3 , 4  (12) 
J 

and 
= Y leos (13) 

J 

where ( la~l)  is the theoretical mean value of IttSl for 
the j th  invariant and ll(Kj)/Io(xj) is the theoretical mean 
value of cosaj. The results were somewhat disappoint- 
ing and the minimum value of r /was  often at a cycle 
which was far from the minimum mean phase error. 
Two examples are given for the r/5 test in Fig. 2. It will 
be seen that in neither is predicted the point at which 
the mean phase error is a minimum. 

It is concluded that the values of r/ are not really 
useful as an indication of when to stop and the rather 
ad hoc criteria (i)-(v) are used instead. 

A e e e l e r a t l o n  o f  c o n v e r g e n c e  

If the value of a refining phase is followed from one 
cycle to the next it is found that the path of the 
variation is quite smooth and well behaved. In Fig. 3 
there are shown the refinement paths of eight different 
phases during 33 cycles of refinement and it can be 
seen that there are some quite large changes between 
the beginning and the end. Nevertheless, the general 
form of these refinement curves suggests that from a 
particular point during the refinement it might be 
possible successfully to extrapolate forward by the 
equivalent of a few cycles. 

190 t\ X ~ / ~ ~  50 ° 

I\. \ 

1701 l I B I I I i I I 30 
0 l0 20 30 40 50 

Cycle 

t/s 

20O 

190 r / s x ~ s  50 ° 

x x \ ~ x x  x\ 40 

180 

. . . .  30 

' ' ' '0 ' '0 ' ;0 ' 1700 10 2 3 50 
Cycle 

Fig. 2. Two examples of the variation of the figure of merit, r/5, and 
the mean phase error over 50 cycles of least-squares refinement. 

This was tried in the following way. The phases were 
found for m iterations of the least-squares linear- 
equations process. Let these be tpi+ 1 . . .  tpi+ s . . .  ~i+,,,- 
These values were fitted to a low-order polynomial p(s) 
of degree n < m - 1. The value ofp( t )  for t >m then 
gave the required extrapolated value, equivalent to 
moving forward t - m iterations. Then one may 
calculate by least-squares iteration m more values and 
repeat the extrapolation. Good success with this 
method has been obtained with m = 3, t = 6; m = 4, 
t -- 8 with a second-degree polynomial but attempts to 
carry the extrapolation too far, e.g. m = 4, t = 10, have 
been unsuccessful, giving phases which fluctuate wildly 
in value. 

The general conclusion is that a moderate use of 
extrapolation is safe and profitable with a saving in 
computing time approaching 50%. One difficulty 
introduced by extrapolation is that although the extra- 
polated phases are a reasonable approximation to those 
which would be found by t - m iterations, they are not 
the same and the convergence criterion shows a sudden 
jump in value. Consequently it becomes more difficult 
to know when to stop refining and this wipes out some 
of the gain in computing time. 

T h e  rad ius  o f  c o n v e r g e n c e  - a surprise  result  

A quantity of interest in any refinement technique is its 
radius of convergence - that is to say the distance in 
parameter space from which it is possible to converge 
to the correct solution. For our purpose the term 
'correct solution' needs to be qualified for, as we have 
seen, even starting from correct phases one may refine 
to a point giving a mean phase error typically in the 
range 20-30  ° . We shall therefore use as our criterion 
for a successful convergence that the final mean phase 
error shall not be greater than 30 ° . 

A series of trials were carried out with data from the 
known structure of 3-chloro-l,3,4-triphenylazetidin-2- 
one (AZET) (Colens, Declercq, Germain,  Putzeys & 
Van Meerssche, 1974). The data set consisted of 70 
large E's ,  taken from the end of a M U L T A N  
convergence map, which were interrelated by 405 
triple-phase relationships. To the true phases there were 
added random errors with a normal distribution and 

CycLe 

30 
i 

rf 

I 

3in 0 
2 2 

Fig. 3. The variation of eight phases over 33 cycles of refinement. 
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Table 2. Number of  successes with 40 trials for  initial 
phase errors with standard deviation tr and refinement 

weighting function 2 m- l~t " 

m 2 3 4 oo 

3O 40 40 40 40 
45 40 40 40 40 
6O 25 40 27 30 
75 23 38 20 19 
90 16 34 17 5 

standard deviation o. These initial phases were then 
refined and any final set of phases with mean error less 
than 30 ° was designated as successful. For each value 
of o, 40 runs were made and the proportion of 
successes found is recorded in Table 2 where the weight 
function, as defined in equation (10), was used with 
m = 2, 3, 4 and oo (i.e. integers were taken). The results 
were rather surprising and, indeed, in initial trials the 
maximum o was taken at 60 ° since it was felt that it 
would be unreasonable to expect to reach a correct 
solution from any greater r.m.s, error. In fact, as can be 
seen, even with a = 90 ° forf (e t )  --- 4td there is a very 
high probability of success. These results naturally 
raised the question of what would be the outcome if one 
started with truly random phases. As one might expect 
from Table 2, with f ( a )  = 4~t 3 there is still a high 
success rate; a run of 15 trials gave six outcomes for 
which the mean error for the 70 phases was between 20 
and 25 ° . 

It should be stressed that the investigation reported 

here was not a computational tour de force achieved by 
some prodigious use of computer time. For the AZET 
phases the complete refinement time with a random 
start took about ten seconds so that in a period of a 
minute or two one could be quite sure of  having at least 
one set of 70 phases with mean error less than 25 o 

Further investigations of random starting points 

With a starting point of 70 phases with low mean error 
it should be possible to develop further phases either by 
the tangent formula or by the M A G L I N  ~,-map 
process. The possibility also presents itself that starting 
with random phases it may be possible to generate 
enough phase information directly to define the 
structure without the need for determining additional 
phases. But then again, even if this objective could be 
achieved there is the question of how long it would take 
and whether in practical terms structures could be 
solved this way. 

In Table 3 there are shown the results of experi- 
ments with a number of  different structures with 
varying numbers of phases and relationships. The main 
observations are: 

(i) In general, as the size of the system increases so 
are good solutions harder to find. 

(ii) Although refining from correct phases for 
ergocalciferol gives a lower mean error for a larger 
system (Table 1), in the experiments with random starts 
the solutions found for the largest system were not only 
fewer but also had a greater mean phase error. This 
means that in 100 trials one had not stumbled upon the 

Table 3. Tests o f  random-start method with ergocalciferol, cortisone, R2, A Z E T  and cinobufagin 

Experimental parameters (N,M,T) give the number of phases (N), the number of relationships (M) and the number of trials (T). The 
results column gives the mean phase error for the best solutions with the number of times that solution is found in parentheses. 

Time per 
Structure N,M,T Results trial(s) 

Ergocalciferol 33,110,100 26.9 (4) 31.2 (1) 33.4 (3) 1-3" 
50,230,50 33.6 (2) 33.9 (1) 36.7 (5) 37.0 (2) 38.3 (1) 
66,382,50 44.1 (2) 47.0 (1) 47.6 (1) 7* 
150,1326,100 42.3 (1)48.0 (I)48.5 (1) 

Cortisone 50,209,150 15.9 (1)21.8 (4) 22.3 (8)26.2 (1)31.4 (1) 

R2 40,104,50 20.5 (1) 21.9 (1) 28.2 (1) 32.8 (1) 
50,173,50 15.8 (2) 20.0 (I) 34-5 (1) 
60,217,50 18.4 (1) 38.9 (1) 3t  
80,362,50 23.4 (1) 6t  

AZET 50,212,50 17.0 (3) 20.9 (2) 26.0 (2) 
100,844,10 22.9 (1) 23.8 (1) 24.1 (2) 
200,3201,27 30.0 (2) 30-5 (1) 31.0 (1) 31-7 (I) 32.4 (2) 100" 

Cinobufagin 100,892,50 33.4 (1) 35.3 (1) 38-5 (1) 15t 
300,4725,500 19.4 (1) 20.6 (1) + 4 below 45 o 108~" 

* Times at York. 
t Times at Louvain. 
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Table 4. Phases from a random starting point for 60 phases of cinobufagin 
~R - refined phase, and ~ ,  ~2 are the correct phase re~rred to two different choices of origin and enantiomorph. 

h k / ~R ~l ~z ~ h k I ~R ~l ~z ¢~ h k l Ck ~t ~z ¢~ 

0 12 1 0 0 0 0 1 1 2 88 62 118 60 1 5 15 270 279 261 270 
5 12 0 90 90 90 90 1 7 16 91 119 61 120 5 7 12 270 252 288 270 
2 7 13 357 321 39 330 0 6 17 180 180 180 180 3 12 4 270 322 218 270 
113 3 91 75 105 120 2 13 4 358 302 58 330 2 7 15 178 157 203 150 
2 9 13 2 108 252 30 I 3 1 90 138 42 90 7 1 2 88 358 182 60 
2 0 2 0 0 0 0 5 5 11 91 57 123 120 2 1 1 179 173 187 150 
3 0 1 90 90 90 90 0 8 16 180 180 180 180 5 1 4 87 51 129 60 
1 15 0 270 270 270 270 2 1 2 2 97 263 30 3 13 1 99 141 39 120 
6 0 6 180 180 180 180 2 0 0 180 180 180 180 1 5 17 90 48 132 90 
1 6 18 90 165 15 90 4 1 1 0 323 37 0 5 6 12 264 242 298 " 240 
0 7 17 90 90 270 90 5 0 1 270 270 270 270 1 8 15 270 296 244 270 
4 7 13 181 161 199 210 1 6 12 276 326 214 300 2 5 16 175 207 153 150 
0 8 14 0 0 0 0 2 5 12 181 204 156 210 5 8 15 270 249 291 270 
3 6 14 271 299 241 300 6 6 11 3 67 293 30 3 12 2 90 108 72 90 
4 7 15 0 4 356 0 4 5 14 179 157 203 150 213 2 178 128 232 150 
1 15 2 93 148 32 120 2 6 14 183 193 167 210 4 15 1 0 20 340 0 
4 13 2 0 321 39 0 3 14 4 268 163 17 240 2 2 ! 2 327 33 30 
1 13 1 268 256 284 240 3 6 13 268 162 18 240 3 8 13 271 320 220 300 
3 12 0 270 270 270 270 5 13 5 82 85 95 60 2 1 3 356 263 97 330 
1 7 14 270 256 284 270 3 5 15 97 100 80 120 3 2 2 269 282 258 240 

minimum corresponding to refining from correct 
phases. 

(iii) The single very good solution for cortisone with 
IAtpl = 15.9 ° was obtained accidentally when the 
program exceeded the present maximum number of 
cycles of refinement. This underlines the unsatisfactory 
nature of the present criterion for terminating the 
refinement. 

(iv) A massive trial on cinobufagin found two 
solutions for 300 phases with a mean phase error of 
about 20 ° . Any optimism that this result might induce 
must be tempered by the fact that the total computer 
time was 15 h. 

(v) The time of refinement for a single random start 
has been found from experience to vary as  (NM) 3/4 
where N is the number of phases and M the number of 
relationships. This formula works extremely well over 
the complete range of size of system which has been 
investigated. 

(vi) The combination of time per random start with 
number of starts required to find a good solution gives 
a practical limit of size of system which can be 
investigated with a DEC 10 computer corresponding to 
100-150 phases. 

It should be pointed out that the ability to reach a 
good solution from a random start is not confined to 
refinement with linear equations. The tangent formula 
is almost as successful anc~ takes a comparable amount 
of computer time. With a limited number of trials the 
results obtained by the two methods of refinement may 
be similar in quality. However, as can be seen from 
Table 1, better solutions are accessible with the linear- 
equations refinement technique and for this reason it is 
much to be preferred. 

The enantiomorph problem 

The examination of the linear equations and the 
random approach was undertaken with known struc- 
tures. Since the initial phases were completely random 
then in order to test the outcome of a refinement 
process it was necessary to check the phases against 
known phases with all possible choices of origin and 
enantiomorph. 

It soon became clear that there were some solutions, 
apparently satisfactory from the point of view of mean 
phase error, which were entirely unsatisfactory in that 
they did not adequately define a single enantiomorph. 
This is illustrated in Table 4 which shows the results of 
one run with cinobufagin. The refined phases have a 
mean error of 30 ° with respect to the phases tpl and 
34 ° with respect to phases tp2 ., corresponding to a 
different origin and enantiomorph. The refined phases 
used as a starting point with the tangent formula do not 
solve the structure - which is not really surprising since 
the phases do not clearly define the enantiomorph. 

A method was found whereby the set of phases tpR 
could be modified so as to improve the enantiomorph 
discrimination. All the phases tpR came out close to 
special values 0, 90, 180 or 270 ° and, with the note- 
worthy exception of reflexion 0,7,17, the refined phase 
is almost an average of that from tpl and tpz. However, 
the values of tpR are not exact averages of the two 
solutions; there are small but significant deviations. 
What can be found is that, where deviations from exact 
values are present, then in 27 out of 33 cases the devia- 
tion is in a direction which is consistent with column tpl , 
which is the column giving agreement with 0,7,17. The 
phases are now modified in the following way. Where 
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Table 5. The A-shift method (A = 30 °) applied to an A Z E T  data set with 200phases and 3201 relationships 

Phase errors for two 
enantiomorphs after 
refinements with 

J ' ( ~ t )  = 4~ t  "t 

Mean phase departure 
from special values 

Phase errors after A shift 

Correct phases Random starts 

/O°, 60"6 ° } 1 2 3 4 5 

{30-2,42-61 I30 ~°,42.5 ° } {31-0°,43-9 ° } 133.0°,40.7 °} {34.6°,38-7 °} {31.6°,44.3 o } 

19.5 20.0 19.2 17.3 17.6 20-0 

{29-9,50.3} {33.6,51.41 {32.3,56.2} 134.6, 48.9} {38.9,41.51 {33.0,50-4/ 

there is a deviation, 6, from a special value, S, then the 
phase is changed to S + sign(6)A, where A is a fixed 
phase shift, usually taken as 30 ° . The effect of the 
modification is shown in column ~0~ of Table 4 and 
these phases have a mean error of 25 o when compared 
with qh and 47 ° with ~02. However, these modified 
phases fed into the linear-equations refinement process 
will regress back to their original qh values. In addition, 
if they are used as a starting point for phase 
development by the tangent formula then they are no 
more successful than the original unmodified ones. 

Actually for cinobufagin the enantiomorph problem 
disappears if one takes a larger data set. In Table 3 
there are three solutions shown for 100 phases. The 
best agreement with another origin and enantiomorph 
choice for these three solutions gave mean phase errors 
of 70, 72 and 66 ° respectively and the enantiomorph 
has been strongly selected. 

The reason for the enantiomorph problem is tied up 
with the refinement process. Common to both the 
linear-equations and the tangent-formula methods is a 
tendency to produce solutions with small values of the 
triple-phase invariants. The whole basis of the linear- 
equations method is to find phases which give as small 
magnitudes as possible for the Ct's, the departures of the 
invariants from integers. Driving the Ct's towards zero 
gives a pseudo centre of symmetry in the structure they 
represent. A representation of the situation may be seen 
in Fig. 4 where OA represents an invariant in the 
complex plane, OB an invariant for an enantiomorph 

B 

Fig. 4. Small values of  a correspond to admixtures of  two 
enant iomorphs (see text). 

structure of lesser weight and OR represents the 
average of the two structures. With the phases from the 
linear-equations method, and from the tangent formula, 
the enantiomorph problem presents itself in an electron- 
density or an E map in the form of a pseudo centre of 
symmetry with two enantiomorphic images of the 
structure with slightly different weights. 

It is this mechanism which is probably responsible 
for most M U L T A N  failures. For some structures it is 
possible to start with 200 eorreet phases and to refine 
them to self-consistency with the tangent formula (and 
with linear equations) in such a way as to lose the 
structure because of the enantiomorph problem. An 
outstanding example of this was with the structure of 
AZET where the system used contained 200 phases 
and 3201 relationships. Since the space group is Pea21 
then to compare refined phases with observed it was 
necessary to consider the calculated phases for all 
possible origins on the 21 axes. The method of doing 
this was straightforward and will not be further con- 
sidered. 

The results of refinement experiments with the 
AZET data are shown in Table 5. 

Starting with true phases the agreements with two 
different origins and enantiomorphs were {0, 60.6°}. 
After refinement with f ( , )  = 4¢t 3 these became {30.2, 
42.6 ° } and it is evident that the phases are not 
distinguishing the enantiomorph very clearly. At this 
stage the pseudo centre of symmetry was detected by 
moving to all possible origins along one 21 axis and 
calculating 

200 

Z =  ~ I cos ~pjl (14) 
j = l  

which is a measure of the closeness of the phases to the 
special values 0 and ~r. The highest value of Z indicated 
the pseudo centre of symmetry and the mean departure 
of the refined phases from special values was 19.5 ° . 
The corresponding value for the true phases was 38 ° 

The A-shift phase modification was made in a fairly 
arbitrary way; for any phase differing by less than 30 ° 
from a special value a shift of 30 ° from the special 
value was made in the indicated direction. For the 200- 
phase AZET example this then gave {29-9, 50.3 ° / and 
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Table 6. Refinement of  200 phases with 3201 relationships for A Z E T  with fQO = 2°'3¢t 1"3 followed by several 

Phase errors for two 
enantiomorphs after 
refinement with 

f ( < O  = 2 ° ' ~ d  3 

Phase errors after 
further refinement 

cycles with f(tQ = cos -~ [I,(x)/Io(X )] sign (a) 

Correct phases Random starts 

{0% 60-6 o } 1 2 3 4 5 

{33.3,35.8} {33.5%41.2 ° } /36.5°,34.5 °} {36.1°,35.5 ° } 139.3°,40.3 °} {35.40,37.7 ° } 

134.8, 54-3 } {30.9,56-2} I52.9, 34.8} {41.2,38.6} 140.6, 51.7} 137-3, 50.7} 

the enantiomorph discrimination was much improved. 
So far the description has been restricted to beginning 
with correct phases and this corresponds to the first 
column of Table 5. The remaining columns are for 
random starts and it will be seen that some of them 
correspond to good enantiomorph discrimination - 
particularly starting set 2. 

Defining the enantiomorph 

The weighting function, 4~0, which has generally been 
found to be most efficient does have a drawback when 
the enantiomorph problem arises. This function allows 
for a gradual drift of each invariant towards a zero 
value as the refinement proceeds. For this reason, when 
the enantiomorph problem arises, an alternative 
function may be used. 

For any invariant, ~, there exists an estimate for 
cos t~ based on the associated x value. This is 
(Germain, Main & Woolfson, 1970) 

(cos ,t) = Ii(x)/Io(x ). (15) 

The technique we have used to enhance enantio- 
morph information is to complete the refinement with 

f(~t) = 4,0 by a few cycles for which 

f ( , 0  = sign (-) cos-qll(X)/Io(x)l. (16) 

This form of function gives an estimate of the 
magnitude of ~ (approximately) with an estimate of its 
sign based on ,t itself. 

The results of this procedure are shown in Table 6. 
In order to make the test as stringent as possible the 
initial refinement was carried out not with function 4,13 
but with 2o3,0 .3 which gives distinctly inferior results 
from the enantiomorph-defining point of  view. This 
may be seen by comparing the top rows in Tables 5 and 
6 which correspond to refinement from the same 
original phase set. 

The idea works quite well and is capable of giving 
good enantiomorph discrimination (see column 2, 
Table 6). However, a proper test of  any set of phases is 
a Fourier map. E maps were calculated with the initial 

phases {33.3, 35-8 ° } and with the final phases {34-8, 
54.3°}.  The first map showed a clear centre of 
symmetry along the 21 axis with related peaks differing 
in height by less than 10%. The second m a p ,  by 
contrast, gave a much clearer picture with the almost 
complete removal of  the pseudo centre of symmetry 
and a large proportion of the molecule could clearly be 
distinguished. 

It appears from this work that the enantiomorph 
problem ha.s essentially been solved. The ideas for 
solving it, as described here, represent the very first to 
be thought of and tried and it seems likely that with 
trials of other ideas an even better process for enantio- 
morph discrimination may be found. 

The need for a figure of merit 

With the random approach, especially for moderate- 
sized systems, obtaining a phase set with low mean 
phase error is straightforward - at least in all cases 
tried so far. The problem is to know how to recognize a 
good phase set. The figures of merit used in MULTAN 
are of very little use for medium-sized systems (80 
phases, say) and some more reliable figure of merit is 
required. 

This is not a problem we can claim to have solved, 
although we do have a partial solution. It was noticed 
that the values of r/, defined in equation (12), although 
they did not reliably indicate when to cease refinement, 
did correlate to some extent with the final mean error. 
We devised a combined figure of merit 

~l ~2 ~3 r/4 
q = - -  + - -  + --  + - -  (17) 

which has a mean value of 4 and which is such that low 
values of q are a favourable indication for the phases. 
When values of q are plotted against the mean phase 
error, as shown in Fig. 5, it is seen that solutions with q 
< 4 tend to include most of  those with lowest mean 
phase error. For the 30-phase example (Fig. 5a) the 
two best solutions have q > 4 but it is interesting to 
note that these sets of phases are abnormal  in the sense 
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that they are better than phases obtained by refining 
true phases to self consistency• 

The search for a better figure of merit, applicable to 
moderate-sized systems, continues• 

Use of the random approach 

Basically there are two possible ways of exploiting the 
random approach• One is to attempt to find a good set 
of phases for a sufficient number of reflexions com- 
pletely to define the structure in an E map. That this is 
possible there can be no doubt but it may be a very 
costly exercise. As a generalization it seems that to 
solve a 40-50 atom structure in this way could take 
about 2 h on a DEC l0 computer• While this is not a 
cost one is prepared to pay if a more economical 
approach is available, it is a cost which modern 
technology can reduce• By the use of an array 
processor it is possible to reduce the time of matrix 
operations by a factor of ten or so and then first-time 
solutions of structures should be possible in times of the 
order of 10-15 rain. 

The approach which seems more attractive and 
economical at the present time is to start by developing 
sets of phases for 70-80 reflexions which, with extra- 
polation, should take 4 s or so per set. Even for 
obdurate structures no more than 100 should need to 
be developed and then, with a suitable figure of merit, 
one would hope to isolate 20 or so sets, at least one of 
which should be a good one. These sets can then be 
developed as described for the M A G L I N  process 
(Woolfson, 1977) where ten or twelve new phases are 
represented by magic integers and a ~, map is calculated 

q 

5 . 0  

,'0 2'o ~o ,~0 5o "0 7o ~0 ~o 

4 . 0  

• ° 
• • •  • ' .  

• " •  • •  • • 

• g : .  . •  
• . "  . • •  • . • . .  

t 1 I 300 ,0 2'o ~0 :0 ~,, ~0 7~0 ~'0 ' 9 0 "  

Fig. 5. The combined figure of merit, q, plotted against mean phase 
error for ergosterol with (a) 30 phases, 90 relationships and (b) 
70 phases, 435 relationships. 

to find probable values for them. Once a base of 70 or 
more phases is established it seems likely that only one 
set of probable values for the new phases will present 
itself, and this will be that which would have been 
obtained by applying the tangent formula. However, it 
should be noted that if two or more large peaks are 
found in the ~, map and these lead to different but 
plausible phases for the additional reflexions then a 
weakness in the tangent-formula approach will be re- 
vealed. The tangent formula can only give one solution 
in developing the new phases and this solution is not 
necessarily the correct one. 

Experiments on how best to use the random 
approach will be made but one thing is already clear. 
Since it is so cheap and easy to produce good sets of 
phases for 40 or even more reflexions the phase- 
permutation approach, even improved by magic in- 
tegers (Main, 1978), ought no longer to be used to 
initiate phase development, no matter how that develop- 
ment is done. 

Conclusion 

Consideration of the random approach gives a valuable 
insight into fundamental aspects of structure solving by 
direct methods• If, for example, one begins with 150 
phases and 1500 relationships then it turns out that one 
is likely to get a good solution in 50-100 trials• What 
does this mean? 

It means that in the 150-dimensional space in which 
the refinement takes place the number of minima 
towards which one may converge is moderately small, 
say 100, and so one is likely to stumble on the correct 
solution in about that number of random trials• That is 
a surprising and an important result; the number of 
minima is not something impossibly large, like l 0  6, as  
might be thought• 

We venture to suggest that many apparently 
systematic and theoretically intricate direct methods 
actually solve complicated structures by a random 
approach! Certainly this is true of M U L T A N .  It has 
been frequently observed that the correct solution is 
obtained from a starting point which is not the one with 
smallest phase errors• For complicated structures, 
where the initial phase-development pathway is via 
relationships of doubtful validity, the 32 or 64 pathways 
may merely be that number of differing random phase 
developments which are subsequently refined to self- 
consistency by the tangent formula• This explains one 
other phenomenon we have observed• When M U L T A N  
has failed to solve a structure then a solution will some- 
times come about by the haphazard process of 
artificially halving the temperature factor or telling the 
program that there are twice as many atoms as there 
really are. All this does is to disturb the system so that 
it attempts a solution via a different route with a new 
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selection of E's. The more random starts one makes the 
better the chance of finding the solution! 

Another characteristic of phase developing and 
refining methods, such as the tangent formula or linear 
equations, is that even when wrong phase sets are 
obtained, an E map from the phases will reveal a 
molecular fragment. Particular sets of E's  may relate 
most strongly to particular parts of the structure and if 
the relative phases of the E's  are correctly deduced then 
the corresponding portion of the molecule will be seen 
although it may be incorrectly positioned. 

This is probably the basis of the success of the 
symbolic addition method. If one is prepared to make 
several starts then within a few trials a set of phases 
giving a fragment may be found. With such a fragment 
an extremely efficient process of structure development 
may be initiated (e.g. Karle, 1968). 

It should not be thought that we are saying that all 
structures are solved by a pseudo random approach. 
For simple structures the M U L T A N  development 
process can start from a best set of phases such that as 
the phase development proceeds so the phases being 
developed are close to their correct values. Again, if 
techniques are employed which can give reliable 
estimates for the values of structure-invariant quanti- 
ties, then the complexity of structure for which a 
solution is obtained by a 'non-random' pathway may 
well be greater. 

The question does nevertheless present i tself-  with 
large and fast computers available and with hardware 

such as array processers becoming ever more common 
- how worthwhile is it to develop intricate and subtle 
techniques when a bull-at-the-fence process may be 
enough? 
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This paper illustrates the potential of Karle-Hauptman determinants for the solution of the phase problem in 
a 'difficult' small structure. An outline of the procedure followed is given. Suggestions for the future are 
presented, together with a discussion of the results obtained. 

I n t r o d u c t i o n  

Efforts to solve small and medium structures (as 
opposed to large protein structures) by direct methods 
have centred on the ~2 relation. Attempts to include 
relations among more than three phases have met with 
some initial success (Gilmore, 1977; Gilmore, Hardy, 
MacNicol & Wilson, 1977; Blank, Rodrigues, Pletcher 

& Sax, 1976; Sax, Rodrigues, Blank, Wood & Pletcher, 
1976). Quartets and quintets have yielded efficient 
criteria for discriminating between solutions obtained 
by ~2-based processes (Schenk, 1973a,b). The em- 
pirical formulae obtained by Schenk have been sup- 
plemented by theory (Hauptman, 1974a,b, 1975a,b; 
Giacovazzo, 1974, 1975; Heinerman, 1975). 

A totally different approach to the problem was 


